Functional versions of L p - affine surface area and entropy inequalities . ∗

نویسندگان

  • U. Caglar
  • M. Fradelizi
  • O. Guédon
  • J. Lehec
  • C. Schütt
  • E. M. Werner
چکیده

In contemporary convex geometry, the rapidly developing Lp-Brunn Minkowski theory is a modern analogue of the classical Brunn Minkowski theory. A cornerstone of this theory is the Lp-affine surface area for convex bodies. Here, we introduce a functional form of this concept, for log concave and s-concave functions. We show that the new functional form is a generalization of the original Lp-affine surface area. We prove duality relations and affine isoperimetric inequalities for log concave and s-concave functions. This leads to a new inverse log-Sobolev inequality for s-concave densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

New L P Affine Isoperimetric Inequalities *

We prove new Lp affine isoperimetric inequalities for all p ∈ [−∞, 1). We establish, for all p 6= −n, a duality formula which shows that Lp affine surface area of a convex body K equals Ln2 p affine surface area of the polar body K◦.

متن کامل

The mixed L p - dual affine surface area for multiple star bodies

Associated with the notion of the mixed Lp-affine surface area for multiple convex bodies for all real p (p 6= −n) which was introduced by Ye, et al. [D. Ye, B. Zhu, J. Zhou, arXiv, 2013 (2013), 38 pages], we define the concept of the mixed Lp-dual affine surface area for multiple star bodies for all real p (p 6= −n) and establish its monotonicity inequalities and cyclic inequalities. Besides, ...

متن کامل

Inequalities for mixed p - affine surface area ∗

We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...

متن کامل

General Affine Surface Areas

Two families of general affine surface areas are introduced. Basic properties and affine isoperimetric inequalities for these new affine surface areas as well as for Lφ affine surface areas are established. 2000 AMS subject classification: Primary 52A20; Secondary 53A15. Finding the right notion of affine surface area was one of the first questions asked within affine differential geometry. At ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014